

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1146-1148

Hexabromoacetone and ethyl tribromoacetate: a highly efficient reagent for bromination of alcohol

Pratoomrat Tongkate, Wanchai Pluempanupat, Warinthorn Chavasiri*

Natural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Received 4 February 2007; revised 1 December 2007; accepted 12 December 2007 Available online 7 January 2008

Abstract

A new and efficient method for the bromination of alcohols utilizing $Br_3CCOCBr_3/PPh_3$ and Br_3CCO_2Et/PPh_3 is described. Various alcohols can be converted smoothly into their corresponding alkyl bromides in high yields under mild conditions with short reaction times. Based upon ¹H NMR studies using competitive reactions between selected brominating agents and Cl_3CCN , $Br_3CCOCBr_3$ displays the highest reactivity approximately nine times that of CBr_4 .

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Alcohols; Bromination; Hexabromoacetone; Ethyl tribromoacetate; Triphenylphosphine

The transformation of alkyl halides into valuable end products is often utilized in organic syntheses.¹ Alkyl chlorides are often used since they are easily prepared using readily available reagents such as SOCl₂, PCl₃ or combined systems of PPh₃ with CCl₄, Cl₃CCOCCl₃, Cl₃CCN or Cl₃CCONH₂.² However, alkyl chlorides are less reactive than alkyl bromides or iodides.³ Thus, an efficient and practical protocol for the preparation of alkyl bromides would be valuable. There are relatively few conditions for the conversion of alcohols into bromides. Previous examples include highly toxic reagents such as HBr gas and Br₂ or coupling reagents like CBr₄/PPh₃, Br₂/PPh₃ and Br₂PPh₃ but HBr is always a by-product and high temperatures are often required.⁴

Recently, we have examined the reactivity of various reagents for the chlorination of alcohols and carboxylic acids to give the corresponding alkyl and acyl chlorides.⁵ The results clearly showed that the reagents possessing strong electron-withdrawing groups such as Cl₃CCOCCl₃ and Cl₃CCN showed the highest reactivity. We have now

extended this idea for bromination and have examined Br₃CCOCBr₃ and Br₃CCO₂Et. Although Br₃CCOCBr₃ was prepared in 1969, only two reports involving the synthesis of bioactive compounds have been addressed.⁶ The preparation and the use of Br₃CCO₂Et for the preparation of amides has also been described.⁷ Nonetheless, these two reagents have never been reported as reagents for bromination of alcohols. Herein, we wish to report the use of Br₃CCOCBr₃/PPh₃ and Br₃CCO₂Et/PPh₃ for the efficient and practical conversion of alcohols into the corresponding alkyl bromides and a relative reactivity study.

Conditions were optimized for the conversion of 2-phenylethanol into 2-phenylethyl bromide (Table 1).

Using a ratio of alcohol:brominating agent:PPh₃ of 1:1.5:1.5 equiv, the desired product was obtained in low to moderate yields in the case of BrCCl₃ and Br₃CCO₂H (entries 2 and 3). However, CBr₄, Br₃CCO₂Et and Br₃CCOCBr₃ afforded the bromide in excellent yields (entries 4, 7 and 10). Interestingly, decreasing the amount of Br₃CCO₂Et and Br₃CCOCBr₃ from 1.5 to 1 and 0.3 equiv, respectively, still provided the desired bromide in quantitative yields (entries 8, 9 and 11–14). Moreover, a short reaction time (15 min) also gave the alkyl bromide in excellent yields (entries 8 and 13).

^{*} Corresponding author. Tel.: +66 2 2187625; fax: +66 2 2187598. *E-mail address:* warintho@yahoo.com (W. Chavasiri).

^{0040-4039/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.12.061

Table 1

Effect of the types of brominating agent, ratio of brominating agent and PPh_3 and reaction time on the conversion of 2-phenylethanol into 2-phenylethyl bromide

	PPh ₃ (1.5 eq)	
- OH	Brominating agent	- Ar
Ph' 🔨	CH ₂ Cl ₂ RT 30 min	Ph' 🗸
0.25 mmol		

Entry	Brominating agent		Yield ^a (%)	
	Туре	Amount (equiv)		
1	None	_	0	
2	BrCCl ₃	1.5	21 ^b	
3	Br ₃ CCO ₂ H	1.5	42	
4	CBr ₄	1.5	96	
5		1.0	90	
6		0.5	42	
7	Br ₃ CCO ₂ Et	1.5	95	
8		1.0	96, 98°	
9		0.5	78	
10	Br ₃ CCOCBr ₃	1.5	98	
11		1.0	99	
12		0.5	99	
13		0.3	99, 98°	
14		0.25	74	

^a Determined by ¹H NMR.

^c Reaction time was 15 min.

This optimized reaction conditions were utilized in a study on the scope of bromination of various primary, secondary and tertiary alcohols (Table 2).

All the primary and secondary, alkyl and cyclic alcohols studied were converted into the corresponding alkyl bromides in high to excellent yields using Br_3CCO_2Et or $Br_3CCOCBr_3$ (entries 1–11). An olefinic by-product was detected as a minor component from 1:5.60 to 1:7.25 (entries 10 and 11). The formation of an olefinic by-product in a ratio of 1:1.40 was previously observed in the chlo-

Table 3

Comparative reactivity study of brominating agents

l'ab.	le	2	

Bromination of alcohols

	ROH _	PPh ₃ (1.5 eq) Brominating agent	DBr	
	0.25 mmol C	H ₂ Cl ₂ , RT, 15 min	ΝDI	
Entry	Alcohol	Brominating agent ^a	Yield ^b (%)	
			RBr	Olefin
1	1-Octanol	Br ₃ CCOCBr ₃	97	_
2		Br ₃ CCO ₂ Et	Quant	_
3	Phenylmethanol	Br ₃ CCO ₂ Et	98	_
4	2-Phenylethanol	Br ₃ CCOCBr ₃	98, 83 ^{c,d}	_
5		Br ₃ CCO ₂ Et	98, 82 ^{c,d}	_
6	(-)-Nopol	Br ₃ CCO ₂ Et	78 ^{c,d}	_
7	(\pm) -2-Octanol	Br ₃ CCOCBr ₃	Quant	_
8		Br ₃ CCO ₂ Et	97	
9	(\pm) -1-Phenylethanol	Br ₃ CCO ₂ Et	98	_
10	Cyclooctanol	Br ₃ CCOCBr ₃	84	15
11		Br ₃ CCO ₂ Et	87	12
12	1-Adamantanol	Br ₃ CCOCBr ₃	$42^{c,d}$	_
13		Br ₃ CCO ₂ Et	48 ^{c,d}	
14	2-Phenyl-2-propanol	Br ₃ CCOCBr ₃	67	30
15		Br ₃ CCO ₂ Et	42	48
anz		I. I D. CCC	D E 4 m m m m m m m m m m m m m m m m m m	1

^a 0.3 equiv Br₃CCOCBr₃ was used; 1 equiv Br₃CCO₂Et was used.

^b Determined by ¹HNMR.

^c Isolated product.

^d 3 mmol of ROH was used.

rination of cyclooctanol using Cl_3CCONH_2/PPh_3 .^{2e} The present results indicate that bromide is a more reactive nucleophile than chloride to generate the corresponding cyclic halides via $S_N 2$ displacement. Tertiary alcohols gave the corresponding alkyl bromides in poorer yields (entries 12–15). This implies that the reaction may take place via two competing pathways, substitution versus elimination. $Br_3CCOCBr_3$ was a more efficient brominating agent than Br_3CCO_2Et for tertiary alcohols (entries 14 and 15).

The reactivity of various reagents in the bromination of alcohols to bromides was also investigated using a competitive reaction between Cl₃CCN and various brominating agents towards 2-phenylethanol (Table 3).⁸

	Ph. A	PPh_3 (1.5 eq) Cl_3CCN (0.75 eq) Brominating agent (0.75 eq)		. Dh	
	✓ OH	CH ₂ Cl ₂ , RT, 15 m	15 min	Br + ''' Cl	
Entry	Brominating agent	Yield	l ^a (%)	Ratio of Br/Cl	Reactivity
		Br	Cl		
1	None	0	76		
2	CBr ₄	32	65	0.49	1
3	Br ₃ CCO ₂ Et	40	60	0.67	1.37
4	Br ₃ CCONEt ₂	47	52	0.90	1.84
5	Br ₃ CCOCBr ₃	80	18	4.44	9.06

^a Determined by ¹H NMR.

^b Based on CBr₄.

^b 2-Phenylethyl chloride was also obtained in 40% yield.

In the absence of brominating agent, 2-phenylethyl chloride was obtained in high yield (entry 1). Br_3CCO_2Et displayed reactivity close to those of CBr_4 and $Br_3CCONEt_2$ (entries 2 and 3). Intriguingly, $Br_3CCOCBr_3$, bearing a strong electron-withdrawing group, significantly displayed the highest reactivity (entry 5). The highest reactivity was associated with the strongest electron-withdrawing groups, just as was observed for chlorination.⁵

In summary, we have disclosed an efficient method for the preparation of alkyl bromides from alcohols using Br₃CCOCBr₃/PPh₃ or Br₃CCO₂Et/PPh₃.

A typical procedure for the preparation of an alkyl bromide: To a stirred solution of alcohol (0.25 mmol) and PPh₃ (0.375 mmol) in dry CH₂Cl₂ (0.5 mL) was added Br₃CCO₂Et (0.25 mmol) or Br₃CCOCBr₃ (0.075 mmol) at rt (30 °C) under a N₂ atmosphere. After 15 min, the reaction was quenched with cold water and the presence of the corresponding product in the crude mixture was determined by ¹H NMR analysis utilizing toluene as an internal standard or alternatively was isolated by purification through silica gel column chromatography.

A reactivity study: To a stirred solution of alcohol (0.25 mmol) and a mixture of brominating agent (0.188 mmol) and Cl₃CCN (0.188 mmol) in dry CH₂Cl₂ (0.5 mL) was added PPh₃ (0.375 mmol) at rt (30 °C) under a N₂ atmosphere. After 15 min, the amount of the corresponding products in the crude mixture was determined by ¹H NMR analysis using toluene as an internal standard.

Acknowledgements

This work was financially supported by a joint research project under the NRCT-KOSEF international coopera-

tive program (KO 47/2547) and the Graduate school, Chulalongkorn University.

References and notes

- (a) Gawande, M. B.; Deshpande, S. S.; Satam, J. R.; Jayaram, R. V. Catal. Commun. 2007, 8, 576–582; (b) Gonzalez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360–5361; (c) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2005, 46, 1489–1491.
- (a) Caserio, F. C.; Dennis, G. E.; Dewolfe, R. H.; Young, W. G. J. Am. Chem. Soc. 1955, 77, 4182–4183; (b) Susan, D. T.; Joyce, T. D. J. Org. Chem. 1987, 52, 4999–5003; (c) Magid, R. M.; Talley, B. G.; Souther, S. K. J. Org. Chem. 1981, 46, 824–825; (d) Matveeva, E. D.; Kurts, A. L.; Yalovskaya, A. I.; Nikishova, N. G.; Bundel, Y. G. Zh. Org. Khim. 1989, 25, 652–653; (e) Pluempanupat, W.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 6821–6823.
- Munbunjong, W.; Lee, E. H.; Chavasiri, W.; Jang, D. O. *Tetrahedron* Lett. 2005, 46, 8769–8771.
- (a) Meyers, C. Y.; Hou, Y.; Lutfi, H. G.; Saft, H. L. J. Org. Chem. 1999, 64, 9444–9449; (b) Deno, N. C.; Potter, N. H. J. Am. Chem. Soc. 1967, 89, 3555–3556; (c) Wagner, A.; Heitz, M. P.; Mioskowski, C. Tetrahedron Lett. 1990, 31, 3141–3144; (d) Schaefer, J. P.; Higgins, J. J. Org. Chem. 1967, 32, 1607–1608; (e) Wiley, G. A.; Hershkowitz, R. L.; Rein, B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86, 964–965.
- Pluempanupat, W.; Chantarasriwong, O.; Taboonpong, P.; Jang, D. O.; Chavasiri, W. *Tetrahedron Lett.* 2007, 48, 223–226.
- (a) Gilbert, E. E. *Tetrahedron* 1969, 25, 1801–1806; (b) Sato, A.; Sugano, M.; Horikoshi, H.; Yoshioka, S.; Nagaki, H. J.P. 02,145,541, 1990; *Chem. Abstr.* 1990, 113, 178250.; (c) Kawanishi, S. J.P. 33,007,980, 1958; *Chem. Abstr.* 1960, 54, 28884.
- (a) Chaysripongkul, S. Master's Thesis, Department of Chemistry, Chulalongkorn University, 2003; (b) Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O. *Tetrahedron Lett.* 2006, 47, 5693–5696; (c) Kang, D. H.; Joo, T. Y.; Chavasiri, W.; Jang, D. O. *Tetrahedron Lett.* 2007, 48, 285–287.
- The reactivity of the brominating agents was assessed by the ratio of the yields of 2-phenylethyl bromide and 2-phenylethyl chloride obtained.